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Key points 13 

- Evapotranspiration rates and the properties that regulate them are spatially heterogeneous at scales 14 

orders of magnitude smaller than typical Earth System Models (ESMs) grid cells. Averaging over this spatial 15 

heterogeneity may lead to biased estimates of energy and water fluxes in ESMs. 16 

- We quantified the effects of averaging over spatial heterogeneity on grid-cell-averaged evapotranspiration 17 

(ET) rates over heterogeneous landscapes across the globe and highlighted the locations where the 18 

heterogeneity bias matters. We showed that because the relationships driving ET are nonlinear, averaging 19 

over sub-grid heterogeneity of derivers of ET, namely precipitation (P) and potential evapotranspiration 20 

(PET), leads to overestimation of average ET. 21 

- Our analysis showed that this "heterogeneity bias" is most pronounced in mountainous terrain, in 22 

landscapes where P is inversely correlated with PET, and in regions with temperate climates and dry 23 

summers. 24 

- We showed that the magnitude of this heterogeneity bias grows on average, and expands over larger 25 

areas, as the size of the grid cell increases. 26 
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Abstract 28 

The major goal of large-scale Earth System Models (ESMs) is to understand and predict global change. However, 29 

computational constraints require ESMs to operate on relatively large spatial grids (typically ~1 degree or ~100 km 30 

in size) with the result that the heterogeneity in land surface properties and processes at smaller spatial scales 31 

cannot be explicitly represented. Averaging over this spatial heterogeneity may lead to biased estimates of energy 32 

and water fluxes in ESMs. For example, evapotranspiration rates and the properties that regulate them are spatially 33 

heterogeneous at scales orders of magnitude smaller than typical ESM grid cells. Here we quantify the effects of 34 

spatial heterogeneity on grid-cell-averaged evapotranspiration (ET) rates, as seen from the atmosphere over 35 

heterogeneous landscapes across the globe. In an earlier study, we used a Budyko framework to functionally relate 36 

ET to precipitation (P) and potential evapotranspiration (PET), and used a sub-grid closure relation to quantify the 37 

effects of sub-grid heterogeneity on average ET at 1° by 1° grid cells- the scale of typical ESM. We showed that 38 

because the relationships driving ET are nonlinear, averaging over sub-grid heterogeneity in P and PET leads to 39 

overestimation of average ET. In this study, we extend that work to the globe and examine the global distribution of 40 

this bias, its scale dependence, and the underlying mechanisms. Our analysis shows that this "heterogeneity bias" is 41 

more pronounced in mountainous terrain, in landscapes where P is inversely correlated with PET, and in regions 42 

with temperate climates and dry summers. We also show that the magnitude of this heterogeneity bias grows on 43 

average, and expands over larger areas, as the size of the grid cell increases. Correcting for this overestimation of 44 

ET in ESMs is important for modeling the water cycle, as well as for future temperature predictions, since current 45 

overestimations of ET rates imply smaller sensible heat fluxes, and potential underestimation of dry and warm 46 

conditions in the context of climate change. Our work provides a basis for translating the heterogeneity bias into 47 

correction factors in large-scale ESMs, and highlights the regions where more detailed mechanistic modeling is 48 

needed.   49 

 50 
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1. Introduction 52 

Earth System Models (ESMs) are designed to understand interactions between the land surface, atmosphere, and 53 

oceans and to predict global environmental changes. However, the Earth system and its underlying physical 54 

processes are highly heterogeneous across orders of magnitude in scale below the scale of typical ESM grids (e.g., 55 

1° by 1°). Despite increasing recognition of the need to mechanistically represent physical processes in ESMs, 56 

currently even the most disaggregated large-scale ESMs cannot explicitly represent the spatial heterogeneity of 57 

land surface hydrological properties at scales that are important to atmospheric fluxes. Overlooking this spatial 58 

heterogeneity and instead averaging over land surface properties at the scale of ESM model grid cells may have 59 

important implications for water and energy flux estimates in large-scale ESMs (Avissar and Pielke, 1989; Giorgi and 60 

Avissar, 1997; Ershadi et al., 2013; Lu et al., 2014).  61 

 62 

Estimates of evapotranspiration (ET) fluxes have significant implications for future temperature predictions. Smaller 63 

ET fluxes imply greater sensible heat fluxes and therefore, amplified dry and warm conditions in the context of 64 

climate change (Seneviratne et al., 2010). Surface evaporative fluxes (and thus energy partitioning over land 65 

surfaces) are nonlinear functions of available water and energy, and thus are coupled to spatially heterogeneous 66 

surface characteristics (e.g., soil type, vegetation, topography) and meteorological inputs (e.g., radiative flux, wind, 67 

and precipitation) (Kalma et al., 2008; Shahraeeni and Or, 2010; Holland et al., 2013). These characteristics are 68 

spatially variable on length scales of <1 m to many kilometers, well below typical ESM grid scales of ~100 km. ESMs 69 

calculate grid-averaged surface and atmospheric fluxes from grid-averaged land surface parameterizations (Sato et 70 

al., 1989; Koster et al., 2006; Santanello and Peters-Lidard, 2011). Thus ET estimates that are derived from spatially-71 

averaged land surface properties do not capture ET variations driven by the underlying surface heterogeneity 72 

(McCabe and Wood, 2006). Because the relationships driving ET are nonlinear, the average ET flux from a 73 

heterogeneous landscape may be different from an ET estimate calculated from spatially averaged inputs 74 

(Rouholahnejad Freund and Kirchner, 2017). 75 

 76 

Several studies have quantified the effects of land surface heterogeneity on ET, potential evapotranspiration (PET), 77 

and latent heat (LH) fluxes, and have found that averaging over land surface heterogeneity can potentially bias ET 78 

estimates either positively or negatively. For example, Boone and Wetzel (1998) studied the effects of soil texture 79 

variability within each pixel in the Land-Atmosphere-Cloud Exchange (PLACE) model, which has a spatial resolution 80 

of approximately 100 by 100 km. They reported that accounting for sub-grid variability in soil texture reduced 81 

global ET by 17%, increased total runoff by 48%, and increased soil wetness by 19%, compared to using a 82 

homogenous soil texture to describe the entire grid cell. Kollet (2009) found that heterogeneity in soil hydraulic 83 

conductivity had a strong influence on evapotranspiration during the dry months of the year, but not during 84 

months with sufficient moisture availability. Hong et al. (2009) reported that aggregating radiance data from 30 m 85 

to 60, 120, 250, 500, and 1000 m resolution (input upscaling) and then calculating ET from these aggregated inputs 86 

at these grid scales using Surface Energy Balance Algorithm for Land (SEBAL, Bastiaanssen et al., 1998a) yields 87 
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slightly larger ET estimates as compared to ET calculated with finer resolution inputs and then aggregated at the 88 

desired grid scales (output upscaling). The discrepancy between ET estimated with the output upscaling method 89 

and the input upscaling method grows as the size of the grid-cell increases (the difference between ET calculated 90 

from the input and output upscaling methods is ~20% more at a grid scale of 1 km by 1 km compared to grid scale 91 

of 120 m by 120 m). Aminzadeh et al. (2017) investigated the effects of averaging surface heterogeneity and soil 92 

moisture availability on potential evaporation from a heterogeneous land surface including bare soil and vegetation 93 

patches. They found that if the heterogeneity length scale is smaller than the convective atmospheric boundary 94 

layer (ABL) thickness, averaging over heterogeneous land surfaces has only a small effect on average potential 95 

evaporation rates. Averaging over larger-scale heterogeneities, however, led to overestimates of potential 96 

evaporation.  97 

 98 

McCabe and Wood (2006) found that remote sensing retrievals of ET are larger than the corresponding in-situ flux 99 

estimates and characterized the roles of land surface heterogeneity and remote sensing resolution in the retrieval 100 

of evaporative flux. McCabe and Wood (2006) used Landsat (60 m), Advanced Space borne Thermal Emission and 101 

Reflection Radiometer (ASTER) (90 m), and MODIS (1020 m) independently to estimate ET over the Walnut Creek 102 

watershed in Iowa. They compared these remote sensing estimates to eddy covariance flux measurements and 103 

reported that Landsat and ASTER ET estimates had a higher degree of consistency with one another and correlated 104 

better to the ground measurements (0.87 and 0.81, respectively) than MODIS- based ET estimates did. All three 105 

remote sensing products overestimated ET as compared to ground measurements (at 12 out of 14 tower sites).  106 

Upon aggregation of Landsat and ASTER retrievals to MODIS scale (1 km), the correlation with the ground 107 

measurements decreased to 0.75 and 0.63 for Landsat and ASTER, respectively. 108 

 109 

Contrary to overestimation bias, many remotely sensed ET estimates that include parameters related to 110 

aerodynamic resistance are significantly affected by heterogeneity, and underestimate ET as the scale increases 111 

(Ershadi et al., 2013). Because aerodynamic resistance is significantly affected by land surface properties (e.g., 112 

vegetation height, roughness length, and displacement height), decreases in aerodynamic resistance at coarser 113 

resolutions could lead to smaller estimates of evapotranspiration. Ershadi et al. (2013) showed that input 114 

aggregation from 120m to 960 m in Surface Energy Balance System (SEBS, Su, 2002) leads to up to 15 % 115 

underestimation of ET at the aggregated grid resolution in an study area in the south-east of Australia.  116 

Rouholahnejad Freund and Kirchner (2017) quantified the impact of sub-grid heterogeneity on grid-average ET 117 

using a simple Budyko curve (Turc, 1954; Mezentsev, 1955) in which long-term average ET is a non-linear function 118 

of long-term averages of precipitation (P) and potential evaporation (PET). They showed mathematically that 119 

averaging over spatially heterogeneous P and PET results in overestimation of ET (Fig. 1). Their analysis implies that 120 

large-scale ESMs that overlook land surface heterogeneity will yield biased evapotranspiration estimates due to the 121 

inherent nonlinearity in ET processes. They did not, however, estimate the likely magnitude of this heterogeneity 122 

bias beyond a few example grid cells. 123 
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 124 

The recognition that spatial averaging can potentially lead to biased flux estimates has prompted methods for 125 

representing sub-grid-scale heterogeneities and processes within ESMs. Accounting for land surface heterogeneity 126 

in large-scale ESMs is constrained by limitations in both computational power (Baker et al. 2017) and the availability 127 

of high-resolution forcing data. There have been several attempts to integrate sub-grid heterogeneity in ESMs while 128 

maintaining the computational costs affordable. In “mosaic” approaches, the model is run separately for each 129 

surface type in a grid cell, and then the surface specific fluxes are area-weighted to calculate the grid-cell average 130 

fluxes (e.g., Avissar and Pielke, 1989; Koster and Suarez, 1992). The “effective parameter” approach (e.g., Wood 131 

and Mason, 1991; Mahrt et al., 1992), by contrast, seeks to estimate effective parameter values at the grid cell 132 

scale that subsume the effects of sub-grid heterogeneity. Estimating these effective parameters can be challenging 133 

because the relevant land-surface processes typically depend nonlinearly on multiple interacting parameters, and 134 

land-surface signals at different scales are propagated and diffused differently in the atmosphere. Alternatively, the 135 

"correction factor" approach (e.g., Maayar and Chen, 2006) uses sub-grid information on spatially heterogeneous 136 

land-surface processes and properties to estimate multiplicative correction factors for fluxes that are originally 137 

calculated from spatially averaged inputs at the grid-cell scale. All three approaches try to reduce the 138 

heterogeneous problem to a homogeneous one that has equivalent effects on the atmosphere at the grid-cell 139 

scale.  140 

 141 

There is a growing need to understand how sub-grid heterogeneity and the atmosphere’s integration of it, affect 142 

grid-scale water and energy fluxes, and to develop effective methods to incorporate these effects in ESMs (Clark et 143 

al., 2015, Fan et al., 2019). The above-mentioned studies present the potential effects of spatial heterogeneity on 144 

water and energy flux estimates in land surface models at several scales, but are deficient in proposing a general 145 

framework for quantifying systematic biases in ET estimates due to averaging over heterogeneities. In a previous 146 

study, we used the Budyko framework as a simple estimator of ET, and demonstrated theoretically how averaging 147 

over heterogeneous precipitation and potential evapotranspiration at the grid scale of a typical ESM (e.g., 1° by 1°) 148 

can lead to systematic overestimation of long-term average ET fluxes from heterogeneous landscapes. In the 149 

present study, we apply that analysis across the globe and highlight the locations where the heterogeneity bias 150 

matters. Our hypotheses are that, (1) strongly heterogeneous landscapes, such as mountainous terrain, will exhibit 151 

higher bias due to averaging, (2) the bias will be higher in climates where P and PET are inversely correlated in 152 

space, and (3) heterogeneity bias will decrease as the spatial scales of averaging decrease.   153 

 154 

2. Effects of sub-grid heterogeneity on ET estimates in the Budyko framework  155 

Budyko (1974) showed that the long-term annual average evapotranspiration is a function of both the supply of 156 

water (precipitation, P) and the evaporative demand (potential evapotranspiration, PET) under steady-state 157 

conditions and in catchments with negligible changes in storage (Eq. 1; Turc, 1954; Mezentsev, 1955).  158 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-103
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 15 March 2019
c© Author(s) 2019. CC BY 4.0 License.



6 
 

𝐸𝑇 = 𝑓(𝑃, 𝑃𝐸𝑇) =
𝑃

((
𝑃

𝑃𝐸𝑇
)𝑛 + 1)

1 𝑛⁄
.      (1) 159 

Evapotranspiration rates are inherently bounded by energy and water limits. Under arid conditions ET is limited by 160 

the available supply of water (the water limit line in Fig. 1b), while under humid conditions ET is limited by 161 

atmospheric demand (PET) and converges toward PET (the energy limit line in Fig. 1b). Budyko showed that over a 162 

long period and under steady-state conditions, hydrological systems function close to their energy or water limits. 163 

These intrinsic water and energy constraints make the Budyko curve downward-curving. 164 

 165 

In a heterogeneous landscape, like the simple example of two ESM columns in Fig. 1a, P and PET vary spatially. The 166 

two columns with heterogeneous P and PET are represented by the two solid black circles on the Budyko curve in 167 

Fig. 1b. In this hypothetical two-column example, the true average of ET values calculated from individual 168 

heterogeneous inputs (the solid black circles) lies below the curve (the grey circle, labeled “true average”). 169 

However, if we aggregate the two columns and consider the system as one column with average properties, the 170 

function of average inputs (averaged P and PET over the two columns) lies on the Budyko curve (the open circle) 171 

which is larger than the true average of the two columns. In short, in any downward curving function, the function 172 

of the average inputs (the open circle) will always be larger than the average of the individual function values (the 173 

true average; grey circle). The difference between the two can be termed the "heterogeneity bias".  174 

Rouholahnejad Freund and Kirchner (2017) showed that when nonlinear underlying relationships are used to 175 

predict average behaviour from averaged properties, the magnitude of the resulting heterogeneity bias can be 176 

estimated from the degree of the curvature in the underlying function and the range spanned by the individual data 177 

being averaged. The second-order, second-moment Taylor expansion of the ET function f(P,PET) (Eq. 1) around its 178 

mean directly yields:  179 

𝑓̅(𝑃, 𝑃𝐸𝑇) = 𝐸𝑇̅̅ ̅̅ ≈ 𝑓(𝑃̅, 𝑃𝐸𝑇̅̅ ̅̅ ̅̅ ) +
1

2

𝜕2𝑓

𝜕𝑃2
 𝑣𝑎𝑟(𝑃) +

1

2

𝜕2𝑓

𝜕𝑃𝐸𝑇2
 𝑣𝑎𝑟(𝑃𝐸𝑇) +

𝜕2𝑓

𝜕𝑃 𝜕𝑃𝐸𝑇
𝑐𝑜𝑣(𝑃, 𝑃𝐸𝑇)     ,       (2) 180 

where 𝑓̅(𝑃, 𝑃𝐸𝑇) is the true average of the spatially heterogeneous ET function, 𝑓(𝑃̅, 𝑃𝐸𝑇̅̅ ̅̅ ̅̅ ) is the ET function 181 

evaluated at is average inputs 𝑃̅ and 𝑃𝐸𝑇̅̅ ̅̅ ̅̅  , and where the derivatives are quantified at 𝑃̅ and 𝑃𝐸𝑇̅̅ ̅̅ ̅̅ .  Evaluating the 182 

derivatives using Eq. (1) and reshuffling the terms, Rouholahnejad Freund and Kirchner (2017) obtained  the 183 

following expression for the heterogeneity bias, the difference between the average ET, 𝑓̅(𝑃, 𝑃𝐸𝑇), and the ET 184 

function evaluated at the mean of its inputs, 𝑓(𝑃̅, 𝑃𝐸𝑇̅̅ ̅̅ ̅̅ ): 185 

𝑓(𝑃̅, 𝑃𝐸𝑇̅̅ ̅̅ ̅̅ ) − 𝑓̅(𝑃, 𝑃𝐸𝑇) ≈ (𝑛 + 1)
 𝑃̅𝑛+1𝑃𝐸𝑇̅̅ ̅̅ ̅̅ 𝑛+1

(𝑃̅𝑛 + 𝑃𝐸𝑇̅̅ ̅̅ ̅̅ 𝑛)2+1
𝑛⁄

 [
1

2

𝑣𝑎𝑟(𝑃)

𝑃̅2
+

1

2

𝑣𝑎𝑟(𝑃𝐸𝑇)

𝑃𝐸𝑇̅̅ ̅̅ ̅̅ 2
−

𝑐𝑜𝑣(𝑃, 𝑃𝐸𝑇)

𝑃 ̅𝑃𝐸𝑇̅̅ ̅̅ ̅̅
].   (3) 186 

As shown by Fig. 1b and Eq. (2), the discrepancy between average of the ET function and the ET function of the 187 

average inputs (the heterogeneity bias) is proportional to both the degree of nonlinearity in the function, as 188 

defined by its second derivatives, and the range of variation in its input variables, as defined by their variances. Eq. 189 

(3) allows one to estimate how much the curvature of a nonlinear relationship and the variance of its inputs at any 190 
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desired scale will affect estimates of the true mean. However, to the best of our knowledge, the consequences of 191 

these nonlinearities for global evaporative flux estimates have not previously been quantified. 192 

 193 

 194 

Figure 1. Heterogeneity bias in a hypothetical two-column model in the Budyko framework. The true average ET of 195 

the columns (gray circle) lies below the curve and is less than the average ET estimated from the average P/PET of 196 

the two columns (open circle). The heterogeneity bias depends on the curvature of the function and the spread of 197 

its inputs. 198 

 199 

3. Effects of sub-grid heterogeneity on ET estimates at 1° by 1° grid scale across the globe  200 

Across a landscape of size similar to a typical ESM grid cell (1° by 1°), soil moisture, atmospheric demand (PET) and 201 

precipitation (P) will vary with topographic position; hillslopes will typically be drier, and riparian regions will be 202 

wetter. To quantify the likely biases introduced by averaging over this land surface heterogeneity, we used the 203 

approach outlined in section 2 to the global land surface area at 1° by 1° grid scale. Within each 1° by 1° grid cell, 204 

we used 30 arc-second values of P (WorldClim; Hijmans et al., 2005) and PET (WorldClim; Hijmans et al., 2005) to 205 

examine the variations in small-scale climatic drivers of ET. Because 30 arc-seconds is nearly 1 km, hereafter we 206 

refer to 30 arc-second data as 1km values for simplicity. The spatial distribution of long-term annual averages 207 

(1960-1990) of P and PET values at 1 km resolution and 1km values of the aridity index (AI=P/PET) are shown in Fig 208 

2a-c. ET estimated from these 1km P and PET values using Eq. 1 are then averaged at 1° by 1° scale (“true average”, 209 

Fig. 2e). To mimic the averaging that takes place within ESMs, we also averaged the 1km values of P and PET within 210 

each grid cell and then modeled ET using Eq. 1 applied to these averaged input values. The difference between 211 

these two ET estimates is the heterogeneity bias. 212 

 213 

We also calculated the heterogeneity bias using Eq. (3), which describes how the nonlinearity in the governing 214 

equation and the heterogeneity in P and PET jointly contribute to the heterogeneity bias. The heterogeneity bias 215 
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estimates obtained by direct calculation and by Eq. (3) were functionally equivalent (R2=0.97, root mean square 216 

error of 0.17%).   217 

 218 

Fig. 3a-d illustrates the variability (quantified by standard deviation) of 1km values of P, PET, aridity index, and 219 

altitude at the 1° by 1° grid scale. The heterogeneity bias in long-term average ET fluxes at the 1° by 1° grid scale 220 

(Fig. 3e) highlights regions around the globe where ET fluxes are likely to be systematically overestimated. The 221 

spatial distribution of the heterogeneity bias (Fig. 3e) closely coincides with locations with large variability in the 222 

aridity index (Fig. 3c), which is driven in turn by topographic variability (Fig. 3d). Strongly heterogeneous landscapes 223 

exhibit significant heterogeneity biases in long-term average ET fluxes, although the global average heterogeneity 224 

bias is small (<1%). Physically based ET calculations may exhibit larger heterogeneity biases than the modest values 225 

we calculate here, because the Budyko approach already subsumes spatial heterogeneity effects at the catchment 226 

scale (and also temporal heterogeneity effects due to its steady- state assumptions). The heterogeneity bias in ET 227 

estimates shown in Fig. 3e corresponds to long-term average ET estimates. Given the fact that P and PET can vary 228 

temporally (i.e., seasonality), the estimated bias could be much larger, particularly where P and PET are inversely 229 

correlated (see the last term of Eq. 3).  230 

 231 

Our results show that the topographic gradient and hence the variability in aridity index across a desired grid size 232 

exhibit consistent, predictable patterns of associated prediction bias in evapotranspiration estimates at that scale. 233 

 234 
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 235 

 236 

Figure 2. Global distribution of one-kilometer resolution annual mean precipitation (a: P; WorldClim; Hijmans et al., 237 

2005), potential evapotranspiration (b: PET; WorldClim; Hijmans et al., 2005), aridity index (c: AI=P/PET; WorldClim; 238 

Hijmans et al., 2005), topography (d: SRTM; Jarvis et al., 2008), and (e) evapotranspiration (ET) at 1° by 1° scale by 239 

averaging 1km values of ET calculated using the Budyko function (Eq. 1).  240 

 241 
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 242 

Figure 3. Global spatial distribution of variability (standard deviation) of one-kilometer values of a) precipitation (P), 243 

b) potential evapotranspiration (PET), c) aridity index (AI=P/PET), and d) altitude at 1° by 1° grid cell. The 244 

approximated averaging bias in ET estimates (e) is calculated using Eq. (3). Grid cells with large standard deviation 245 

in altitude and aridity index encounter higher percentage of averaging bias. 246 
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4. Variation in heterogeneity bias across climate zones, data sources, and grid scales  247 

With increased availability of spatial data, it is becoming standard practice to assess input data uncertainties and 248 

their propagated impacts on water and energy flux estimates in land surface models. To quantify how choices 249 

among alternative input data products could affect the heterogeneity bias in ET estimates, we calculated the 250 

heterogeneity bias at 1 ° by 1° grid cell resolution across the contiguous US using four different pairs of P and PET 251 

data products. Two precipitation data sets, Prism (http://prism.oregonstate.edu) and WorldClim (Hijmans et al., 252 

2005), along with two PET data sets, MODIS (Mu et al., 2007) and WorldClim (Hijmans et al., 2005), all at 1 km 253 

resolution, were combined in all possible pairs.  The heterogeneity bias in ET estimates (Eq. 3), as outlined in 254 

section 2, was evaluated from 1km values of P, PET, and the estimated average ET using the Budyko relationship 255 

(Eq. 1) for each of the four input data pairs. Fig. 4a-e compares the spatial distributions of heterogeneity bias across 256 

the contiguous US for the four pairs of P and PET data products. The heterogeneity bias in ET estimates reached as 257 

high as 36 % in the western US using Prism P and WorldClim PET as input to the ET model (Fig. 4a). A visual 258 

comparison of Figs. 4a, c, d, and e shows that the choice of P data source (Prism vs. WorldClim) had a bigger effect 259 

on the heterogeneity bias than the choice of PET data source (MODIS vs. WorldClim). In all cases, data sources that 260 

were more variable in relation to their means (Prism for P and WorldClim for PET; Fig. 4b) led to larger 261 

heterogeneity biases, as expected from Eq. (3). If we had conducted our global analysis (Fig. 3) with Prism P and 262 

either WorldClim or MODIS PET we would have obtained larger heterogeneity biases, but Prism P is not freely 263 

available globally. 264 

 265 

If we divide the heterogeneity biases shown in Fig. 4 by Köppen-Geiger climate zones (Peel et al., 2007; Fig. 5), we 266 

see that the heterogeneity bias is distinctly higher in particular climate-terrain combinations. The 267 

heterogeneity bias is higher in regions with temperate climate and dry summers (climate zone Cs) and in regions 268 

with cold, dry summers (climate zone Ds) perhaps due to the sharp spatial gradient in their water and energy 269 

sources for evapotranspiration. These areas typically have high topographic relief, combined with seasonal climate. 270 

The heterogeneity effects on ET estimates in these regions are expected to be even higher when a mechanistic 271 

model of ET is used. We expect that averaging over temporal variations of drivers of ET, especially in places with 272 

strong seasonality, could bias the ET estimates but can not be quantified in the Budyko framework due to its 273 

underlying steady-state assumptions. Figure 5 also illustrates the relative magnitudes of the heterogeneity biases 274 

obtained with the four pairs of P and PET data sources. The heterogeneity bias generally decreases in the order: 275 

Prism P-WorldClim PET >> Prism P-MODIS PET >> WorldClim P-WorldClim PET >> WorldClim P-MODIS PET. 276 

 277 

 278 
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  279 

Figure 4. Estimated averaging bias (Eq. 3) across contiguous US using one-kilometer values of a) Prism P and 280 

WorldClim PET c) Prism P and MODIS PET d) WorldClim P and WorldClim PET, and e) WorldClim P and MODIS PET as 281 

inputs. The distribution of P and PET in the four datasets is shown in b).  282 

 283 

 284 
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 285 

Figure 5. Köppen-Geiger climate classification (Peel et al., 2007 in Beck et al. 2013) across contiguous US and the 286 

distribution of corresponding calculated averaging bias in ET estimates (Eq. 3) at 1° by 1° grid cell at individual 287 

climate zone shown by boxplot. The background color code in the box plot corresponds to the climate zones on the 288 

left.  Three data points with heterogeneity biases of over 20% are off-scale. 289 

 290 

One may expect that future increases in computing power will lead to ESMs with smaller grid cells than those in 291 

common usage today.  It is therefore useful to ask how changes in ESM grid resolution are likely to affect the 292 

heterogeneity biases that we have estimated in this paper.  To quantify the heterogeneity bias in ET estimates as a 293 

function of grid scale, we repeated our analysis at various grid resolutions using Switzerland as a test case.  We 294 

started with high-resolution (500m) maps of long-term average annual precipitation and PET across the Swiss 295 

landscape (Fig. 6), and then used Eq. 3 to estimate the heterogeneity bias at grid scales ranging from 1/32° to 2° (~3 296 

km to ~200 km).  As Fig. 6 shows, aggregating P and PET over larger scales leads to larger, and more widespread, 297 

overestimates in ET.  Conversely, at finer grid resolutions, the average heterogeneity bias is smaller, and the 298 

locations with large biases are more localized. 299 

 300 
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 302 

Figure 6. Heterogeneity bias in ET estimates at various scales across Switzerland, estimated from 500m climate 303 

data.  ET is calculated using the Budyko relationship (Eq. 1).  Heterogeneity bias was estimated from 500m 304 

precipitation (P) and potential evapotranspiration (PET), and their variances at each grid scale, using Eq. 3.  At finer 305 

grid resolutions, the heterogeneity bias is more localized, and smaller on average. 306 

 307 

  308 
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5. Summary and discussion 309 

Because evapotranspiration (ET) processes are inherently bounded by water and energy constraints, over the long 310 

term, ET is always a nonlinear function of available water and PET, whether this function is expressed as a Budyko 311 

curve or another ET model. These nonlinearities imply that spatial heterogeneity will not simply average out in 312 

predictions of land surface water and energy fluxes in ESMs. Overlooking the spatial heterogeneity in large scale 313 

ESMs could lead to biases in estimated water and energy fluxes (e.g. ET rates). Here we have shown that, across 314 

several scales, averaging over spatially heterogeneous land surface properties and processes leads to biases in 315 

evapotranspiration estimates. These biases can be estimated, and these estimates can potentially be used as 316 

correction factors to improve calculations of surface-atmosphere water and energy fluxes across landscapes. 317 

 318 

In this study, we used Budyko curves as simple models of ET, in which long-term average ET rates are functionally 319 

related to long-term averages of P and PET. We used an approach outlined by Rouholahnejad Freund and Kirchner 320 

(2017) to estimate the heterogeneity bias in modeled ET at 1-degree grid scale across the globe (Fig. 3), and also at 321 

multiple grid scales across Switzerland (Fig. 6), using finer-resolution P and PET values as drivers of ET. We showed 322 

how the heterogeneity effects on ET estimates vary with the nonlinearity in the governing equations and with the 323 

variability in land surface properties. Our analysis shows that heterogeneity effects on ET fluxes matter the most in 324 

areas with sharp gradients in the aridity index, which are in turn controlled by topographic gradients, and not 325 

merely in areas that are either arid or humid (e.g., compare Fig. 3e with Fig. 2c). 326 

 327 

According to our analysis, regions within the U.S. that have temperate climates and dry summers exhibit greater 328 

heterogeneity bias in ET estimates (Fig. 5). We show that the heterogeneity bias in ET estimates at each grid scale 329 

depends on the variance in the drivers of ET at that scale (Fig. 4), and on the choice of data sources used to 330 

estimate ET. Heterogeneity bias was significantly larger across the contiguous United States when P and PET data 331 

sources with larger variances were used (Fig. 4). 332 

 333 

We also explored the magnitude and spatial distribution of heterogeneity bias in ET estimates as a function of the 334 

scale at which the climatic drivers of ET are averaged. We found that as heterogeneous climatic variables are 335 

aggregated to larger scales, the heterogeneity biases in ET estimates become greater on average, and extend over 336 

larger areas (Fig. 6). At smaller grid scales, the heterogeneity bias does not completely disappear, but instead 337 

becomes more localized around areas with sharp topographic gradients. Finding an effective scale at which one can 338 

average over the heterogeneity of land surface properties and processes has been a longstanding problem in Earth 339 

science. Our analysis shows that at smaller resolutions the average heterogeneity bias as seen from the 340 

atmosphere becomes smaller, but there is no characteristic scale at which it vanishes entirely (Fig. 6). The 341 

magnitude and spatial distribution of this bias depend strongly on the scale of the averaging and degree of the 342 

nonlinearity in the underlying processes. The averaging bias concept is general and extendable to any convex or 343 
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concave function (Rouholahnejad Freund and Kirchner 2017), meaning that in any nonlinear process, averaging 344 

over spatial and temporal heterogeneity can potentially lead to bias. 345 

 346 

One should keep in mind that the true mechanistic equations that determine point-scale ET as a function of point-347 

scale water availability and PET (if such data were available) may be much more nonlinear than Budyko’s empirical 348 

curves, because these curves already average over the spatial heterogeneities across spatial and temporal scales. 349 

Thus, we expect that the real-world effects of sub-grid heterogeneity are probably larger than those we have 350 

estimated in Sects. 3 and 4 of this study. In addition, the 1km P and PET values that are used in our global analysis 351 

might be still too coarse to represent small-scale heterogeneity that is important to evapotranspiration processes. 352 

 353 

Budyko curves are empirical relationships that functionally relate evaporation processes to the supply of water and 354 

energy under steady-state conditions in closed catchments with no changes in storage. Our analysis likewise 355 

assumes no changes in storage, nor any lateral transfer between the model grid cells, although both lateral 356 

transfers and changes in storage may be important, both in the real world and in models. Unlike the Budyko 357 

framework, ET fluxes in most ESMs are often physically based (not merely functions of P and PET) and are 358 

calculated at much smaller time steps (seconds to minutes). These models often represent more processes that are 359 

important to evapotranspiration (such as storage variations and lateral transfers) and include their dynamics to the 360 

extent that is computationally feasible. Because these relationships may be much more nonlinear than Budyko 361 

curves, there may also be significant averaging biases when complex physically based models are used to estimate 362 

ET from spatially aggregated data. Therefore, we are now working to quantify aggregation bias in ET fluxes using a 363 

more mechanistic land surface model. 364 

 365 

Our results have further implications for representing sub-grid heterogeneity in hydrological parameterizations of 366 

large scale ESMs, for example as sets of correction factors. However, the estimated bias shown in this study is for 367 

long-term average ET estimates using a conceptual model that uses long-term annual averages. Average ET could 368 

be substantially affected by temporal heterogeneity in water and energy fluxes, particularly in climates with strong 369 

seasonally and shifts between water-limited and energy-limited conditions. The temporal variations in the drivers 370 

of ET fluxes have not been addressed in the current study but can potentially be a source of bias for ET flux 371 

estimates. Estimating aggregation bias in ET fluxes at time scales that are relevant to ESMs is therefore needed. 372 

Once such bias estimations are quantified at daily or sub-daily time scales, they can be used as correction factors to 373 

account for the aggregation bias in ET flux estimates.  374 

 375 
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